

BUK7E2R3-40C

N-channel TrenchMOS standard level FET Rev. 03 — 26 January 2009

Product data sheet

Product profile 1.

1.1 General description

Standard level gate drive N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using advanced TrenchMOS technology. This product has been designed and qualified to the appropriate AEC standard for use in high performance automotive applications.

1.2 Features and benefits

- AEC Q101 compliant
- Avalanche robust

- Suitable for standard level gate drive
- Suitable for thermally demanding environment up to 175°C rating

1.3 Applications

- 12V Motor, lamp and solenoid loads
- High performance automotive power systems
- High performance Pulse Width Modulation (PWM) applications

1.4 Quick reference data

Table 1. **Quick reference**

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	-	40	V
I _D	drain current	V_{GS} = 10 V; T_{mb} = 25 °C; see <u>Figure 1</u> ; see <u>Figure 3</u> ;	[1] [2]	-	-	100	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	333	W
Static ch	aracteristics						
R _{DSon}	drain-source on-state resistance	$\label{eq:VGS} \begin{array}{l} V_{GS} = 10 \text{ V}; \text{ I}_{D} = 25 \text{ A}; \\ T_{j} = 25 \ ^{\circ}\text{C}; \text{ see } \underline{\text{Figure 12}}; \\ \text{see } \underline{\text{Figure 13}} \end{array}$		-	1.96	2.3	mΩ
Avalanc	he ruggedness						
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$ \begin{split} I_D &= 100 \text{ A}; \text{V}_{\text{sup}} \leq 40 \text{ V}; \\ R_{\text{GS}} &= 50 \Omega; \text{V}_{\text{GS}} = 10 \text{V}; \\ T_{j(\text{init})} &= 25 ^\circ\text{C}; \text{ unclamped} \end{split} $		-	-	1.2	J

[1] Refer to document 9397 750 12572 for further information.

[2] Continuous current is limited by package.

nexperia

2. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		_
2	D	drain	mb	
3	S	source		
mb	D	mounting base; connected to drain		mbb076 S
			SOT226 (TO-220AB;I2PAK)	

3. Ordering information

Table 3.Ordering information

Type number	Package		
	Name	Description	Version
BUK7E2R3-40C	TO-220AB; I2PAK	plastic single-ended package (I2PAK); low-profile 3-lead TO-220AB	SOT226

4. Limiting values

Table 4.Limiting values

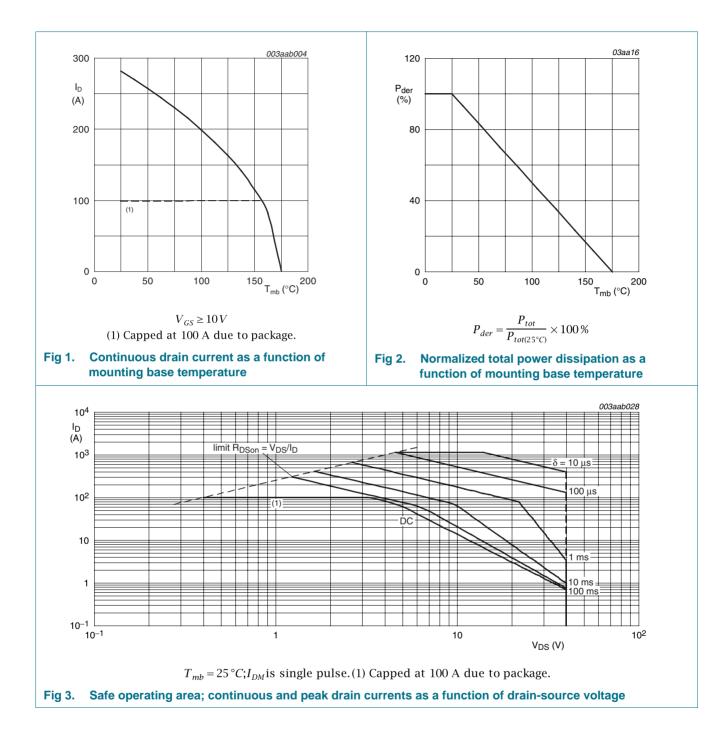
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	40	V
V _{DGR}	drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$		-	40	V
V _{GS}	gate-source voltage			-20	20	V
I _D	drain current	$T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V}; \text{ see } \frac{\text{Figure 1}}{\text{Figure 3}};$	[1][2]	-	100	A
		T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 1</u> ; see <u>Figure 3</u> ;	[1][3]	-	276	А
		T _{mb} = 100 °C; V _{GS} = 10 V; see <u>Figure 1</u> ;	[1][2]	-	100	А
I _{DM}	peak drain current	$T_{mb} = 25 \text{ °C}; t_p \le 10 \mu\text{s}; \text{ pulsed}; \text{ see } \frac{\text{Figure } 3}{10 \mu\text{s}}$		-	1104	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	333	W
T _{stg}	storage temperature			-55	175	°C
Tj	junction temperature			-55	175	°C
Source-dr	ain diode					
I _S	source current	T _{mb} = 25 °C;	[1][3]	-	276	А
		T _{mb} = 25 °C;	[1][2]	-	100	А
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^\circ C$		-	1104	А
Avalanche	e ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$ I_D = 100 \text{ A}; \text{V}_{sup} \leq 40 \text{ V}; \text{R}_{GS} = 50 \Omega; \text{V}_{GS} = 10 \text{ V}; \\ \text{T}_{j(\text{init})} = 25 ^{\circ}\text{C}; \text{ unclamped} $		-	1.2	J
E _{DS(AL)R}	repetitive drain-source avalanche energy	see <u>Figure 4;</u>	[4][5] [6][7]	-	-	J

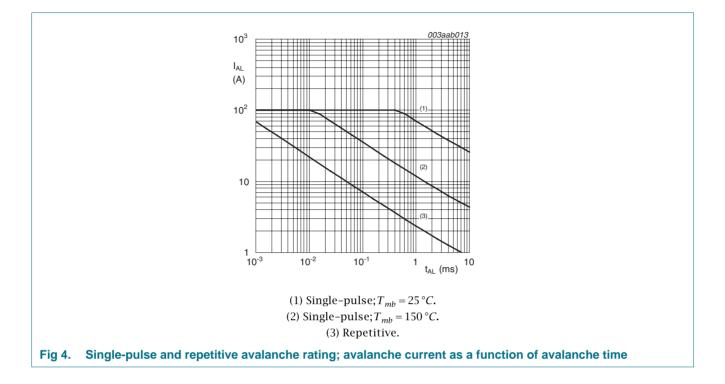
[1] Refer to document 9397 750 12572 for further information.

[2] Continuous current is limited by package.

[3] Current is limited by power dissipation chip rating.

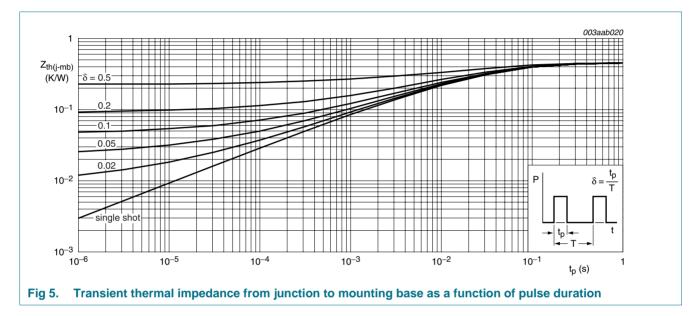

[4] Maximum value not quoted. Repetitive rating defined in avalanche rating figure.

[5] Single-pulse avalanche rating limited by maximum junction temperature of 175 °C.


[6] Repetitive avalanche rating limited by an average junction temperature of 170 °C.

[7] Refer to application note AN10273 for further information.

BUK7E2R3-40C

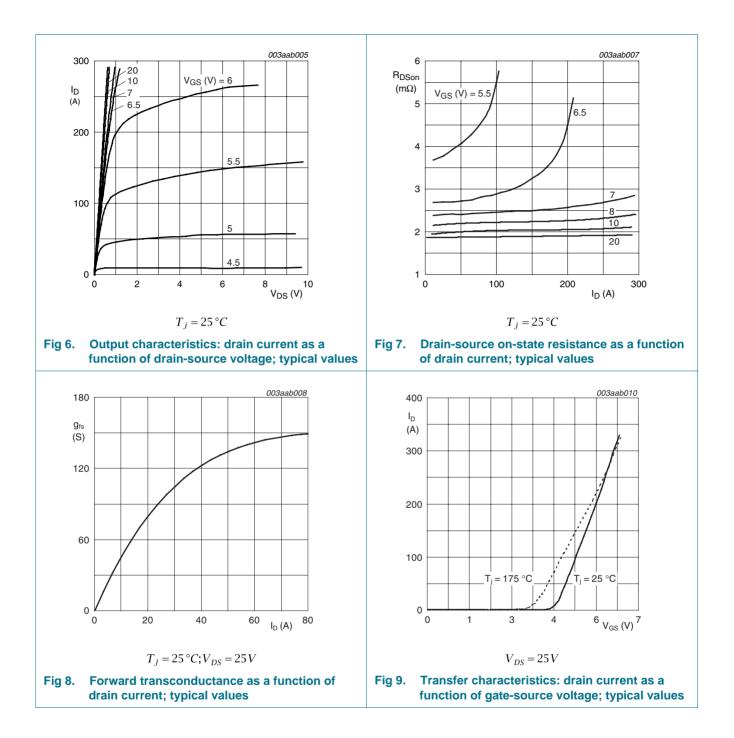


BUK7E2R3-40C

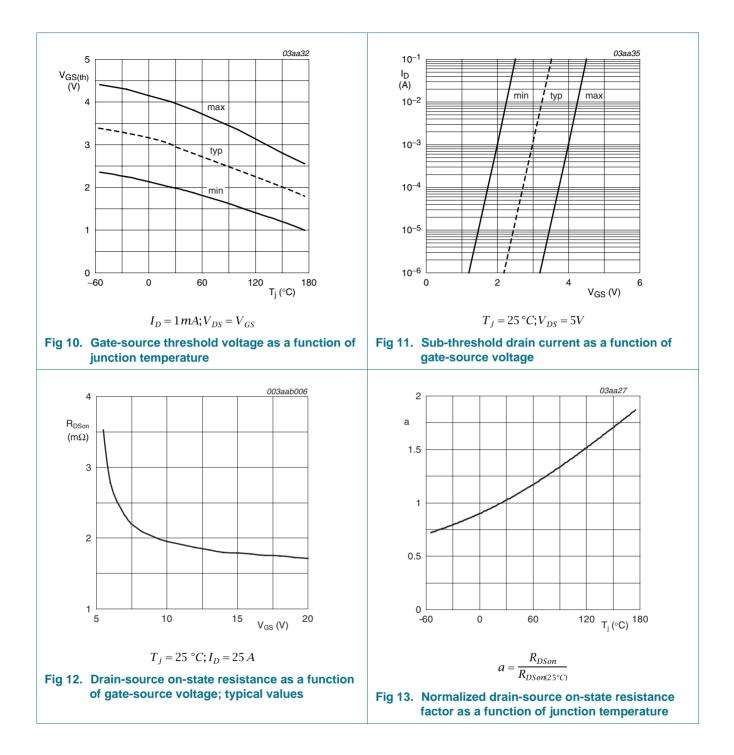
5. Thermal characteristics

Table 5.	Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-mb)}	thermal resistance from junction to mounting base	see <u>Figure 5</u>	-	-	0.45	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	vertical in free air	-	50	-	K/W

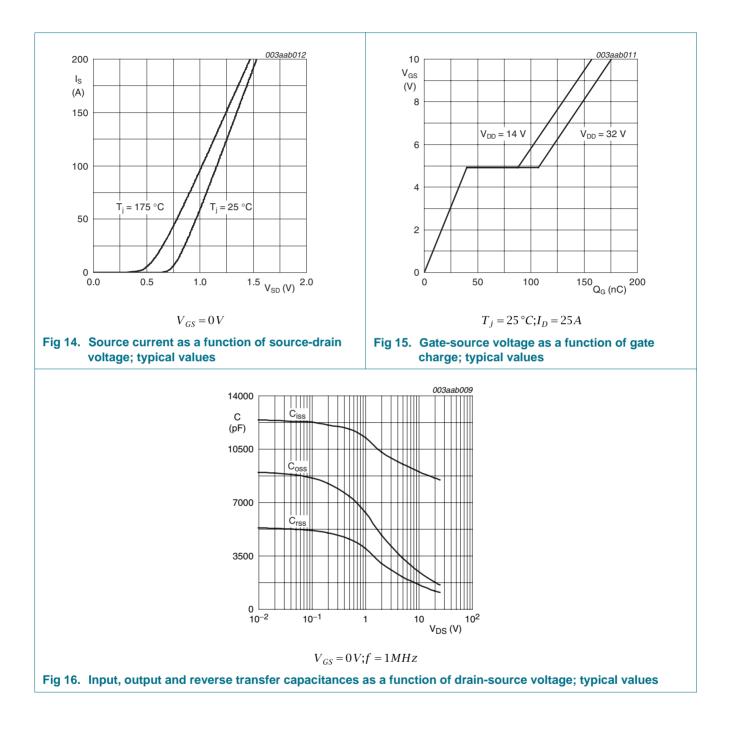
6. Characteristics


Table 6.	Characteristics	Conditions	P4 !	T.	Marr	11
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	racteristics					
V _{(BR)DSS}	drain-source breakdown voltage	$I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_j = -55 \ ^\circ\text{C}$	36	-	-	V
		$I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^\circ\text{C}$	40	-	-	V
V _{GS(th)}	gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C}; \text{ see}$ Figure 10; see Figure 11	2	3	4	V
V _{GSth}	gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 175 \text{ °C}; \text{ see}$ Figure 10; see Figure 11	1	-	-	V
		I _D = 1 mA; V _{DS} = V _{GS} ; T _j = -55 °C; see <u>Figure 10;</u> see <u>Figure 11</u>	-	-	4.4	V
I _{DSS}	drain leakage current	$V_{DS} = 40 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.02	1	μΑ
I _{GSS}	gate leakage current	V _{DS} = 0 V; V _{GS} = 20 V; T _j = 25 °C	-	2	100	nA
		$V_{DS} = 0 \text{ V}; \text{ V}_{GS} = -20 \text{ V}; \text{ T}_{j} = 25 \text{ °C}$	-	2	100	nA
R _{DSon}	drain-source on-state resistance	V_{GS} = 10 V; I_D = 25 A; T_j = 175 °C; see Figure 12; see Figure 13	-	-	4.26	mΩ
		V _{GS} = 10 V; I _D = 25 A; T _j = 25 °C; see <u>Figure 12</u> ; see <u>Figure 13</u>	-	1.96	2.3	mΩ
I _{DSS}	drain leakage current	V_{DS} = 40 V; V_{GS} = 0 V; T_j = 175 °C	-	-	500	μΑ
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	I_D = 25 A; V_{DS} = 32 V; V_{GS} = 10 V; see	-	175	-	nC
Q _{GS}	gate-source charge	Figure 15	-	49	-	nC
Q _{GD}	gate-drain charge		-	67	-	nC
V _{GS(pl)}	gate-source plateau voltage	$I_D = 25 \text{ A}; V_{DS} = 32 \text{ V}; \text{ see } \frac{\text{Figure } 15}{100000000000000000000000000000000000$	-	5	-	V
C _{iss}	input capacitance	$V_{GS} = 0 V; V_{DS} = 25 V; f = 1 MHz;$	-	8492	11323	pF
C _{oss}	output capacitance	$T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{1000}$	-	1606	1927	pF
C _{rss}	reverse transfer capacitance		-	1101	1508	pF
t _{d(on)}	turn-on delay time	$V_{DS} = 30 \text{ V}; \text{ R}_{L} = 1.2 \Omega; \text{ V}_{GS} = 10 \text{ V};$	-	65	-	ns
t _r	rise time	$R_{G(ext)} = 10 \ \Omega$	-	133	-	ns
t _{d(off)}	turn-off delay time		-	146	-	ns
t _f	fall time		-	119	-	ns
L _D	internal drain inductance	from drain lead 6 mm from package to centre of die	-	4.5	-	nH
		from upper edge of drain mounting base to centre of die	-	2.5	-	nH
L _S	internal source inductance	from source lead to source bonding pad	-	7.5	-	nH
Source-di	rain diode					
V _{SD}	source-drain voltage	$I_S = 25 \text{ A}$; $V_{GS} = 0 \text{ V}$; $T_j = 25 \text{ °C}$; see Figure 14	-	0.85	1.2	V
t _{rr}	reverse recovery time	$I_{S} = 20 \text{ A}; \text{ d}I_{S}/\text{d}t = -100 \text{ A}/\mu\text{s}; \text{ V}_{GS} = 0 \text{ V};$	-	75	-	ns
Q _r	recovered charge	$V_{DS} = 30 V$	-	57	-	nC

BUK7E2R3-40C_3


Product data sheet

© Nexperia B.V. 2017. All rights reserved


BUK7E2R3-40C


BUK7E2R3-40C

BUK7E2R3-40C

7. Package outline

Fig 17. Package outline SOT226 (I2PAK)

8. Revision history

Document IDRelease dateData sheet statusChange noticeSupersedesBUK7E2R3-40C 320090126Product data sheet-BUK75 7E2R3-40C	
BUK7E2R3-40C 3 20090126 Product data sheet - BUK75 7E2R3-40	
)C_2
Modifications: • The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors.	
 Legal texts have been adapted to the new company name where appropriate. 	
 Type number BUK7E2R3-40C separated from data sheet BUK75_7E2R3-40C_2. 	
BUK75_7E2R3-40C_2 20060810 Product data sheet - BUK75_7E2R3-40	C_1
BUK75_7E2R3-40C_1 20060503 Product data sheet	

9. Legal information

9.1 Data sheet status

Document status [1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions"

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

10. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

BUK7E2R3-40C

N-channel TrenchMOS standard level FET

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values3
5	Thermal characteristics6
6	Characteristics7
7	Package outline11
8	Revision history12
9	Legal information13
9.1	Data sheet status13
9.2	Definitions13
9.3	Disclaimers
9.4	Trademarks
10	Contact information13